extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C28).1C22 = C22⋊Dic14 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).1C2^2 | 224,73 |
(C2×C28).2C22 = C23.D14 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).2C2^2 | 224,74 |
(C2×C28).3C22 = C22.D28 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).3C2^2 | 224,81 |
(C2×C28).4C22 = C28⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 224 | | (C2xC28).4C2^2 | 224,83 |
(C2×C28).5C22 = C4⋊D28 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).5C2^2 | 224,90 |
(C2×C28).6C22 = D14⋊2Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).6C2^2 | 224,92 |
(C2×C28).7C22 = C4⋊C4⋊D7 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).7C2^2 | 224,93 |
(C2×C28).8C22 = C28.Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 224 | | (C2xC28).8C2^2 | 224,13 |
(C2×C28).9C22 = C4.Dic14 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 224 | | (C2xC28).9C2^2 | 224,14 |
(C2×C28).10C22 = C14.D8 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).10C2^2 | 224,15 |
(C2×C28).11C22 = C14.Q16 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 224 | | (C2xC28).11C2^2 | 224,16 |
(C2×C28).12C22 = C28.53D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | 4 | (C2xC28).12C2^2 | 224,28 |
(C2×C28).13C22 = C28.46D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 56 | 4+ | (C2xC28).13C2^2 | 224,29 |
(C2×C28).14C22 = C4.12D28 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | 4- | (C2xC28).14C2^2 | 224,30 |
(C2×C28).15C22 = D28⋊4C4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 56 | 4 | (C2xC28).15C2^2 | 224,31 |
(C2×C28).16C22 = D4⋊Dic7 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).16C2^2 | 224,38 |
(C2×C28).17C22 = C28.D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 56 | 4 | (C2xC28).17C2^2 | 224,39 |
(C2×C28).18C22 = Q8⋊Dic7 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 224 | | (C2xC28).18C2^2 | 224,41 |
(C2×C28).19C22 = C28.10D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | 4 | (C2xC28).19C2^2 | 224,42 |
(C2×C28).20C22 = D4⋊2Dic7 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 56 | 4 | (C2xC28).20C2^2 | 224,43 |
(C2×C28).21C22 = Dic7⋊3Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 224 | | (C2xC28).21C2^2 | 224,82 |
(C2×C28).22C22 = C28.3Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 224 | | (C2xC28).22C2^2 | 224,85 |
(C2×C28).23C22 = D7×C4⋊C4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).23C2^2 | 224,86 |
(C2×C28).24C22 = D28⋊C4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).24C2^2 | 224,88 |
(C2×C28).25C22 = D7×M4(2) | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 56 | 4 | (C2xC28).25C2^2 | 224,101 |
(C2×C28).26C22 = D28.C4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | 4 | (C2xC28).26C2^2 | 224,102 |
(C2×C28).27C22 = C8⋊D14 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 56 | 4+ | (C2xC28).27C2^2 | 224,103 |
(C2×C28).28C22 = C8.D14 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | 4- | (C2xC28).28C2^2 | 224,104 |
(C2×C28).29C22 = C2×D4⋊D7 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).29C2^2 | 224,126 |
(C2×C28).30C22 = D4.D14 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 56 | 4 | (C2xC28).30C2^2 | 224,127 |
(C2×C28).31C22 = C2×D4.D7 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).31C2^2 | 224,128 |
(C2×C28).32C22 = D4×Dic7 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).32C2^2 | 224,129 |
(C2×C28).33C22 = C28.17D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).33C2^2 | 224,131 |
(C2×C28).34C22 = C28⋊2D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).34C2^2 | 224,133 |
(C2×C28).35C22 = C28⋊D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).35C2^2 | 224,135 |
(C2×C28).36C22 = C2×Q8⋊D7 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).36C2^2 | 224,136 |
(C2×C28).37C22 = C28.C23 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | 4 | (C2xC28).37C2^2 | 224,137 |
(C2×C28).38C22 = C2×C7⋊Q16 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 224 | | (C2xC28).38C2^2 | 224,138 |
(C2×C28).39C22 = Q8×Dic7 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 224 | | (C2xC28).39C2^2 | 224,140 |
(C2×C28).40C22 = C28.23D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).40C2^2 | 224,142 |
(C2×C28).41C22 = Q8.Dic7 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | 4 | (C2xC28).41C2^2 | 224,143 |
(C2×C28).42C22 = D4⋊D14 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 56 | 4+ | (C2xC28).42C2^2 | 224,144 |
(C2×C28).43C22 = D4.8D14 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | 4 | (C2xC28).43C2^2 | 224,145 |
(C2×C28).44C22 = D4.9D14 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | 4- | (C2xC28).44C2^2 | 224,146 |
(C2×C28).45C22 = C2×D4⋊2D7 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).45C2^2 | 224,179 |
(C2×C28).46C22 = C2×Q8×D7 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).46C2^2 | 224,181 |
(C2×C28).47C22 = C2×Q8⋊2D7 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).47C2^2 | 224,182 |
(C2×C28).48C22 = Q8.10D14 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | 4 | (C2xC28).48C2^2 | 224,183 |
(C2×C28).49C22 = D4.10D14 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | 4- | (C2xC28).49C2^2 | 224,186 |
(C2×C28).50C22 = C23.11D14 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).50C2^2 | 224,72 |
(C2×C28).51C22 = Dic7⋊4D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).51C2^2 | 224,76 |
(C2×C28).52C22 = D14.D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).52C2^2 | 224,78 |
(C2×C28).53C22 = D14⋊D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).53C2^2 | 224,79 |
(C2×C28).54C22 = Dic7.D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).54C2^2 | 224,80 |
(C2×C28).55C22 = Dic7.Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 224 | | (C2xC28).55C2^2 | 224,84 |
(C2×C28).56C22 = C4⋊C4⋊7D7 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).56C2^2 | 224,87 |
(C2×C28).57C22 = D14.5D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).57C2^2 | 224,89 |
(C2×C28).58C22 = D14⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).58C2^2 | 224,91 |
(C2×C28).59C22 = C7×C4.D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 56 | 4 | (C2xC28).59C2^2 | 224,49 |
(C2×C28).60C22 = C7×C4.10D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | 4 | (C2xC28).60C2^2 | 224,50 |
(C2×C28).61C22 = C23.18D14 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).61C2^2 | 224,130 |
(C2×C28).62C22 = Dic7⋊D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).62C2^2 | 224,134 |
(C2×C28).63C22 = Dic7⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 224 | | (C2xC28).63C2^2 | 224,139 |
(C2×C28).64C22 = D14⋊3Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).64C2^2 | 224,141 |
(C2×C28).65C22 = C7×C22.D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).65C2^2 | 224,158 |
(C2×C28).66C22 = C7×C4.4D4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).66C2^2 | 224,159 |
(C2×C28).67C22 = C7×C42.C2 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 224 | | (C2xC28).67C2^2 | 224,160 |
(C2×C28).68C22 = C7×C42⋊2C2 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | | (C2xC28).68C2^2 | 224,161 |
(C2×C28).69C22 = C7×C8⋊C22 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 56 | 4 | (C2xC28).69C2^2 | 224,171 |
(C2×C28).70C22 = C7×C8.C22 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | 4 | (C2xC28).70C2^2 | 224,172 |
(C2×C28).71C22 = C7×2- 1+4 | φ: C22/C1 → C22 ⊆ Aut C2×C28 | 112 | 4 | (C2xC28).71C2^2 | 224,194 |
(C2×C28).72C22 = C28.6Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).72C2^2 | 224,65 |
(C2×C28).73C22 = C42⋊D7 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).73C2^2 | 224,67 |
(C2×C28).74C22 = C4.D28 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).74C2^2 | 224,70 |
(C2×C28).75C22 = C42⋊2D7 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).75C2^2 | 224,71 |
(C2×C28).76C22 = C2×Dic7⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).76C2^2 | 224,118 |
(C2×C28).77C22 = C4×C7⋊D4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).77C2^2 | 224,123 |
(C2×C28).78C22 = C23.23D14 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).78C2^2 | 224,124 |
(C2×C28).79C22 = C7×C42⋊C2 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).79C2^2 | 224,152 |
(C2×C28).80C22 = C28.44D4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).80C2^2 | 224,22 |
(C2×C28).81C22 = C8⋊Dic7 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).81C2^2 | 224,23 |
(C2×C28).82C22 = C56⋊1C4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).82C2^2 | 224,24 |
(C2×C28).83C22 = C2.D56 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).83C2^2 | 224,27 |
(C2×C28).84C22 = C4×Dic14 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).84C2^2 | 224,63 |
(C2×C28).85C22 = C28⋊2Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).85C2^2 | 224,64 |
(C2×C28).86C22 = C4×D28 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).86C2^2 | 224,68 |
(C2×C28).87C22 = C28⋊4D4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).87C2^2 | 224,69 |
(C2×C28).88C22 = C2×C56⋊C2 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).88C2^2 | 224,97 |
(C2×C28).89C22 = C2×D56 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).89C2^2 | 224,98 |
(C2×C28).90C22 = C2×Dic28 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).90C2^2 | 224,100 |
(C2×C28).91C22 = C28.48D4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).91C2^2 | 224,119 |
(C2×C28).92C22 = C2×C4⋊Dic7 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).92C2^2 | 224,120 |
(C2×C28).93C22 = C23.21D14 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).93C2^2 | 224,121 |
(C2×C28).94C22 = C28⋊7D4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).94C2^2 | 224,125 |
(C2×C28).95C22 = C22×Dic14 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).95C2^2 | 224,174 |
(C2×C28).96C22 = Dic14⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 56 | 2 | (C2xC28).96C2^2 | 224,11 |
(C2×C28).97C22 = C56.C4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | 2 | (C2xC28).97C2^2 | 224,25 |
(C2×C28).98C22 = D28.2C4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | 2 | (C2xC28).98C2^2 | 224,96 |
(C2×C28).99C22 = D56⋊7C2 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | 2 | (C2xC28).99C2^2 | 224,99 |
(C2×C28).100C22 = C2×C4.Dic7 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).100C2^2 | 224,116 |
(C2×C28).101C22 = C4×C7⋊C8 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).101C2^2 | 224,8 |
(C2×C28).102C22 = C42.D7 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).102C2^2 | 224,9 |
(C2×C28).103C22 = C28⋊C8 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).103C2^2 | 224,10 |
(C2×C28).104C22 = C8×Dic7 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).104C2^2 | 224,19 |
(C2×C28).105C22 = Dic7⋊C8 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).105C2^2 | 224,20 |
(C2×C28).106C22 = C56⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).106C2^2 | 224,21 |
(C2×C28).107C22 = D14⋊C8 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).107C2^2 | 224,26 |
(C2×C28).108C22 = C28.55D4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).108C2^2 | 224,36 |
(C2×C28).109C22 = D7×C42 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).109C2^2 | 224,66 |
(C2×C28).110C22 = D7×C2×C8 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).110C2^2 | 224,94 |
(C2×C28).111C22 = C2×C8⋊D7 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).111C2^2 | 224,95 |
(C2×C28).112C22 = C22×C7⋊C8 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).112C2^2 | 224,115 |
(C2×C28).113C22 = C2×C4×Dic7 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).113C2^2 | 224,117 |
(C2×C28).114C22 = C7×D4⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).114C2^2 | 224,51 |
(C2×C28).115C22 = C7×Q8⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).115C2^2 | 224,52 |
(C2×C28).116C22 = C7×C4≀C2 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 56 | 2 | (C2xC28).116C2^2 | 224,53 |
(C2×C28).117C22 = C7×C4.Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).117C2^2 | 224,55 |
(C2×C28).118C22 = C7×C2.D8 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).118C2^2 | 224,56 |
(C2×C28).119C22 = C7×C8.C4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | 2 | (C2xC28).119C2^2 | 224,57 |
(C2×C28).120C22 = C14×C4⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).120C2^2 | 224,151 |
(C2×C28).121C22 = D4×C28 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).121C2^2 | 224,153 |
(C2×C28).122C22 = Q8×C28 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).122C2^2 | 224,154 |
(C2×C28).123C22 = C7×C4⋊D4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).123C2^2 | 224,156 |
(C2×C28).124C22 = C7×C22⋊Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).124C2^2 | 224,157 |
(C2×C28).125C22 = C7×C4⋊1D4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).125C2^2 | 224,162 |
(C2×C28).126C22 = C7×C4⋊Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).126C2^2 | 224,163 |
(C2×C28).127C22 = C14×M4(2) | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).127C2^2 | 224,165 |
(C2×C28).128C22 = C7×C8○D4 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | 2 | (C2xC28).128C2^2 | 224,166 |
(C2×C28).129C22 = C14×D8 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).129C2^2 | 224,167 |
(C2×C28).130C22 = C14×SD16 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | | (C2xC28).130C2^2 | 224,168 |
(C2×C28).131C22 = C14×Q16 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).131C2^2 | 224,169 |
(C2×C28).132C22 = C7×C4○D8 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 112 | 2 | (C2xC28).132C2^2 | 224,170 |
(C2×C28).133C22 = Q8×C2×C14 | φ: C22/C2 → C2 ⊆ Aut C2×C28 | 224 | | (C2xC28).133C2^2 | 224,191 |
(C2×C28).134C22 = C7×C8⋊C4 | central extension (φ=1) | 224 | | (C2xC28).134C2^2 | 224,46 |
(C2×C28).135C22 = C7×C22⋊C8 | central extension (φ=1) | 112 | | (C2xC28).135C2^2 | 224,47 |
(C2×C28).136C22 = C7×C4⋊C8 | central extension (φ=1) | 224 | | (C2xC28).136C2^2 | 224,54 |